Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

Identifieur interne : 000117 ( Main/Exploration ); précédent : 000116; suivant : 000118

Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

Auteurs : Rustam Aghazadeh [Iran] ; Mohammadreza Zamani [Iran] ; Mostafa Motallebi [Iran] ; Mehdi Moradyar [Iran] ; Zahra Moghadassi Jahromi [Iran]

Source :

RBID : pubmed:27430511

Descripteurs français

English descriptors

Abstract

Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.

DOI: 10.1007/s11274-016-2104-6
PubMed: 27430511


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.</title>
<author>
<name sortKey="Aghazadeh, Rustam" sort="Aghazadeh, Rustam" uniqKey="Aghazadeh R" first="Rustam" last="Aghazadeh">Rustam Aghazadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zamani, Mohammadreza" sort="Zamani, Mohammadreza" uniqKey="Zamani M" first="Mohammadreza" last="Zamani">Mohammadreza Zamani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran. zamani@nigeb.ac.ir.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motallebi, Mostafa" sort="Motallebi, Mostafa" uniqKey="Motallebi M" first="Mostafa" last="Motallebi">Mostafa Motallebi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moradyar, Mehdi" sort="Moradyar, Mehdi" uniqKey="Moradyar M" first="Mehdi" last="Moradyar">Mehdi Moradyar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moghadassi Jahromi, Zahra" sort="Moghadassi Jahromi, Zahra" uniqKey="Moghadassi Jahromi Z" first="Zahra" last="Moghadassi Jahromi">Zahra Moghadassi Jahromi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27430511</idno>
<idno type="pmid">27430511</idno>
<idno type="doi">10.1007/s11274-016-2104-6</idno>
<idno type="wicri:Area/Main/Corpus">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000108</idno>
<idno type="wicri:Area/Main/Curation">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000108</idno>
<idno type="wicri:Area/Main/Exploration">000108</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.</title>
<author>
<name sortKey="Aghazadeh, Rustam" sort="Aghazadeh, Rustam" uniqKey="Aghazadeh R" first="Rustam" last="Aghazadeh">Rustam Aghazadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zamani, Mohammadreza" sort="Zamani, Mohammadreza" uniqKey="Zamani M" first="Mohammadreza" last="Zamani">Mohammadreza Zamani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran. zamani@nigeb.ac.ir.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motallebi, Mostafa" sort="Motallebi, Mostafa" uniqKey="Motallebi M" first="Mostafa" last="Motallebi">Mostafa Motallebi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moradyar, Mehdi" sort="Moradyar, Mehdi" uniqKey="Moradyar M" first="Mehdi" last="Moradyar">Mehdi Moradyar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moghadassi Jahromi, Zahra" sort="Moghadassi Jahromi, Zahra" uniqKey="Moghadassi Jahromi Z" first="Zahra" last="Moghadassi Jahromi">Zahra Moghadassi Jahromi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran</wicri:regionArea>
<wicri:noRegion>Tehran</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">World journal of microbiology & biotechnology</title>
<idno type="eISSN">1573-0972</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (drug effects)</term>
<term>Ascomycota (pathogenicity)</term>
<term>Brassica napus (genetics)</term>
<term>Brassica napus (microbiology)</term>
<term>Chitinases (genetics)</term>
<term>Chitinases (metabolism)</term>
<term>Chitinases (pharmacology)</term>
<term>Disease Resistance (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Fungal Proteins (pharmacology)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (pharmacology)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Recombinant Fusion Proteins (pharmacology)</term>
<term>Trichoderma (enzymology)</term>
<term>Trichoderma (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ascomycota (effets des médicaments et des substances chimiques)</term>
<term>Ascomycota (pathogénicité)</term>
<term>Brassica napus (génétique)</term>
<term>Brassica napus (microbiologie)</term>
<term>Chitinase (génétique)</term>
<term>Chitinase (métabolisme)</term>
<term>Chitinase (pharmacologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Protéines de fusion recombinantes (pharmacologie)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines fongiques (pharmacologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (pharmacologie)</term>
<term>Résistance à la maladie (MeSH)</term>
<term>Trichoderma (enzymologie)</term>
<term>Trichoderma (génétique)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brassica napus</term>
<term>Oryza</term>
<term>Plant Diseases</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Brassica napus</term>
<term>Chitinase</term>
<term>Maladies des plantes</term>
<term>Oryza</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Oryza</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Brassica napus</term>
<term>Maladies des plantes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Brassica napus</term>
<term>Plant Diseases</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chitinase</term>
<term>Oryza</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chitinase</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Resistance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Résistance à la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27430511</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-0972</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2016</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>World journal of microbiology & biotechnology</Title>
<ISOAbbreviation>World J Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.</ArticleTitle>
<Pagination>
<MedlinePgn>144</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11274-016-2104-6</ELocationID>
<Abstract>
<AbstractText>Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aghazadeh</LastName>
<ForeName>Rustam</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zamani</LastName>
<ForeName>Mohammadreza</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran. zamani@nigeb.ac.ir.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Motallebi</LastName>
<ForeName>Mostafa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moradyar</LastName>
<ForeName>Mehdi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moghadassi Jahromi</LastName>
<ForeName>Zahra</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>World J Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9012472</NlmUniqueID>
<ISSNLinking>0959-3993</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.14</RegistryNumber>
<NameOfSubstance UI="D002688">Chitinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029688" MajorTopicYN="N">Brassica napus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002688" MajorTopicYN="N">Chitinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014242" MajorTopicYN="N">Trichoderma</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antifungal activity</Keyword>
<Keyword MajorTopicYN="N">Brassica napus</Keyword>
<Keyword MajorTopicYN="N">Chimeric chitinase</Keyword>
<Keyword MajorTopicYN="N">Sclerotinia sclerotiorum</Keyword>
<Keyword MajorTopicYN="N">Thaumatin-like protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27430511</ArticleId>
<ArticleId IdType="doi">10.1007/s11274-016-2104-6</ArticleId>
<ArticleId IdType="pii">10.1007/s11274-016-2104-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Mar;54(384):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12598580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 May 5;31(17):4308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2015 Apr;57(4):371-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25572937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Oct;61(19-20):2632-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15526168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):942-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Mar;23(12):780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15761662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2014 Apr;30(4):1229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Oct;32(10 ):1313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jun;26(6):791-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17221225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Sep;26(9):1539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17508215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2013 Jun;54(2):609-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 May;29(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1979 Oct 1;98(2):433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">496008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 1995 Jul;11(4):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24414753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Dec;17(6):1127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1985 Mar;5(2):69-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2014 Sep;34(3):215-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23859124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7860-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9653105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2003 Jan-Feb;85(1-2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2012 Jun;21(6):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 Jun;92(8):1031-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergol Int. 2013 Dec;62(4):447-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):637-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jul;228(2):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18446363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2013 Aug;29(8):1517-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23515962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Iran</li>
</country>
</list>
<tree>
<country name="Iran">
<noRegion>
<name sortKey="Aghazadeh, Rustam" sort="Aghazadeh, Rustam" uniqKey="Aghazadeh R" first="Rustam" last="Aghazadeh">Rustam Aghazadeh</name>
</noRegion>
<name sortKey="Moghadassi Jahromi, Zahra" sort="Moghadassi Jahromi, Zahra" uniqKey="Moghadassi Jahromi Z" first="Zahra" last="Moghadassi Jahromi">Zahra Moghadassi Jahromi</name>
<name sortKey="Moradyar, Mehdi" sort="Moradyar, Mehdi" uniqKey="Moradyar M" first="Mehdi" last="Moradyar">Mehdi Moradyar</name>
<name sortKey="Motallebi, Mostafa" sort="Motallebi, Mostafa" uniqKey="Motallebi M" first="Mostafa" last="Motallebi">Mostafa Motallebi</name>
<name sortKey="Zamani, Mohammadreza" sort="Zamani, Mohammadreza" uniqKey="Zamani M" first="Mohammadreza" last="Zamani">Mohammadreza Zamani</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27430511
   |texte=   Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27430511" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020